
PE1RXF APRS Server

M.T. Konstapel

2021-12-30

Abstract

This document describes the build and use of an APRS server, designed for the 2
meter and 70 cm amateur radio bands. It is based around a Raspberry Pi Zero and
has a build in radio as well as an option for connecting an external second radio.
At can be configured as a digipeater (single, dual or cross band), an igate and -
by means of some custom programs - can be used for sending and receiving APRS
messages. It also can decode and process the custom telemetry data protocol from
PE1RXF data logging devices. It is fully configurable by the command line and the
most used functions are available via a web site.

1

1 An overview

1.1 Hardware

1

2

J1

1

2

J3

3

4

1

2

J2

Left

GND

Headphones

Left1

GND

Microphone

1

2

1

2

USB sound card Sound modem

1

2

J7

J6

J8

MIC

GND

AUX

LS

GND

PTT

GND

Transceiver

GPIO18

GND

GPIO17

Raspberry Pi Zero

3

4

J3

1

5

Packet modem nanoUSB hub

USB

1: MIC

2: GND

DIN

3: PTT

5: LS

Ext. USB

SDA

SCL

J3

VCC

GND

TinyRTC

SDA

SCL

GPIO

5V

GND

1

2

J5

7.6V

GND

1

2

ANT
N connector

5V

GND

DC/DC

5V

GND

XLR

GPIO

2: 12V

1: GND

Figure 1: block diagram of the hardware

The heart of the device is a Raspberry Pi Zero. Connected to it via USB are two
AFSK1200 modems. One a sound modem, connected to a Baofeng portable radio. The
other an Arduino based KISS modem, wired to a 5 pin DIN connector on the back of the
device. A second FM transceiver can be connected to this DIN plug. Both modems are
galvanically isolated from the transceivers.

A real time clock keeps the time and two USB ports are available on the back of
the device. These ports can be used for anything. For example: one can be used for
connecting a WIFI or Ethernet adapter, the other for connecting a third KISS modem
for APRS over LoRa.

The device is powered by 12 Volt.

1.2 Software

The Raspberry Pi Zero runs Raspberry Pi OS Bullseye. Both modems are available
through the ax25 ports ax0 and ax1. The sound modem is handled by Direwolf and
attached to port ax0. The packet modem nano is attached to port ax1. These two ax25
ports are then bind to aprx, which handles most of the APRS traffic.

Some functions are handled by the custom software. These include beaconing, gener-
ating acknowledges, sending and receiving message, generating some basic statistics and
decoding the custom telemetry data.

2

AX.25 stack

PE1RXF

custom software

APRX

APACHE2ETH0

ax0

ax1

DireWolf

KISS

Sound modem

Packet modem

nano

Ethernet

Send APRS messages, beacons and acknowledges
kissutil

beacon

Figure 2: block diagram of the software

When connected to Ethernet or WiFi, most functions are available via the Apache
web server and the whole system can be configured and maintained via SSH.

2 Hardware: a detailed view

2.1 Sound modem

The sound modem is constructed from an off the shelf USB sound card (figure 4a) and a
custom radio interface (figure 3).

The USB sound card is a generic card with a microphone input and a headphones
output. The output must me capable of driving a 600 Ohm load. In order to safe space,
the plastic enclosure is removed and the pcb is directly soldered to the radio interface.

The radio interface provides galvanic isolation of the radio. This prevents ground
loops. Because the radio is build in, this is not strictly necessary. But it is still good
practice and it makes the interface more versatile. With RV1 and RV3, the receive and
transmit sensitivity can be set.

The PTT circuit has a watchdog build around a 555 timer. With RV2, the watchdog
time is set to approximately half a minute. This limits the transmit time of the transceiver
to about 30 seconds.

An optocoupler isolates the CD (carrier detect) LED. Again, the isolation is not really
needed here, but the interface was designed to be universal. With this design it is possible
to replace the build in transceiver with an external transceiver, powered by a separate
power supply, without having to worry about ground loops.

The watchdog and the status LEDs are powered by 7.6V from the DC/DC-converter.
This odd voltage is chosen because the internal radio is also powered from this supply.

3

Figure 3: sound modem

2.2 Internal transceiver

(a) usb sound card (b) Baofeng UV-9Rplus

Figure 4: the peripherals

The sound modem is connected to the internal transceiver. This can be any random
FM transceiver. I use a Baofeng UV9Rplus (figure 4b). It works surprisingly well given

4

the reputation of these cheap radios. But I do not dare to hook it up to a spectrum
analyzer. You should use a reputable brand!

2.3 Packet modem nano

Figure 5: packet modem nano

When I started using packet radio in the early 90s, the only thing I could afford was
a cheap baycom modem. And while it worked great, I always dreamed of having a real
TNC. Now I finally could build one and it only costs me a mere twenty Euros. It is based
on the MicroModem1 designed by markqvist (figure 5).

The modem uses the standard KISS firmware from markqvist.

2.4 Real time clock

While you can hook up the device to the internet and have the luxury of the Network
Time Protocol, it must also be able to keep time when not connected to the net. So a
Real Time Clock or RTC is connected to the Raspberry Pi via I2C. I used a TinyRTC
(figure 6).

The Raspberry Pi GPIO pins work with 3.3 Volts levels and are not 5 Volt tolerant.
The TinyRTC is powered by 5 Volts but works reliably with 3.3 Volt signal levels. By
removing the pull up resistors on the TinyRTC, the two can safely communicate with
each other.

1https://unsigned.io/micromodem/

5

100pF

C1

VCC VCC

GNDGND

SDA

SCL

SDA

SCL

GND

VCC

32768Hz

X1

3k3

R3

3k3

R2

DSDS

A0
1

SDA
5

A2
3

A1
2

WP
7

VSS
4

SCL
6

VCC
8

U3

AT24C32

VCC

GND

SCL

SDA

VCC

200

R5

470K

R6

1.5M

R4

GND
SCL

SDA

3k3

R1GND

VCCDS

SQ

X1
1

X2
2

VBAT
3

GND
4

SDA
5

SCL
6

SQW/OUT
7

VCC
8

U2

DS1307Z

IN4148

D1

100pF

C2

GND

VCC
1

2

3

4

5

6

7

P1

Header 7

1

2

3

4

5

P2

Header 5

SQ

680k

R7
VCC

G
N

D
1

D
O

2

V
C

C
3

DS18B20

U1

B1

Battery

3k3

R8

Remove when using

non-chargeable cell

U1 notpopulated

Remove R4 and short R6

when using non-chargeable cell

Remove when using

with Raspberry Pi

BatVcc

BatVcc

Figure 6: tinyRTC

2.5 Raspberry Pi Zero

The software runs on a Raspberry Pi Zero (figure 7). This tiny single board computer
is more than capable of running the software. Even DireWolf, which is relatively power
hungry, loads the cpu for only 15-20%. The Raspberry Pi Zero is powered by a DC/DC-
converter (figure 8a) which converts the 12 Volt input voltage to the needed 5 Volts.

2.6 Connecting it all

The modems as well as the two external USB ports are connected to the Raspberry Pi
Zero through a OTG USB-hub. Nothing fancy, just a cheap one (figure 8b).

Figure 9 shows the guts of the machine. The RTC, Raspberry Pi Zero and the DC/DC-
converter are located at the top right. Hidden from sight just below that is the packet
modem nano. A photograph of the modem is shown in figure 10.

The sound modem sits on the left. The usb sound card itself is removed from the
plastic housing and soldered to this board at a 90 degrees angle. You have to look hard
to see it, but it is there.

The wiring diagram can be found in figure 1.

6

Figure 7: Raspberry Pi Zero

(a) DC/DC-converter (b) USB hub

Figure 8: the peripherals

7

Figure 9: digipeater from above

Figure 10: packet modem nano

8

3 Software: a detailed view

3.1 Operating system

The operating system used is Raspberry Pi OS Lite bullseye. The custom software from
PE1RXF comes with the file installation pe1rxf-aprs-server.txt which describes in detail
how to set it up for this project.

3.2 Dire Wolf and kissattach

The sound modem is processed by Dire Wolf. Via kissattach it is attached to the AX.25
stack as port ax0. The packet modem nano, which is a KISS modem, is also attached to
the AX.25 stack via kissattach. It is available as ax1.

Dire Wolf is the most processor intensive program of the digipeater, but still uses only
about 15-20% cpu time.

3.3 AX.25 stack

The file /etc/ax25/axports defines the AX.25 ports ax0 and ax1. The software runs
quietly in the background, doing its job.

3.4 APRX

The main functionality of the digipeater is performed by APRX. This program is widely
used and performs very good on limited hardware.

3.5 PE1RXF custom software

Without it the digipeater would just be that: a digipeater. This software makes is more
user friendly: via a web interface it is possible to send and receive messages, set beacons
for each channel and see what calls were heard the last 24 hours. It also processes the
custom APRS telemetry data form PE1RXF devices, presenting the data in nice graphs.

Settings can be altered in the main configuration file ham/aprs utils/pe1rxf-aprs-
server.cfg. If a parameter is not set, the defaults in file ham/aprs utils/pe1rxf-aprs-
server.cfg.defaults are used.

3.5.1 Utilities

Most features are available as individual small programs in the ham/aprs utils/ directory.
These programs are used by the web interface and the main loop, but some can also be
run from the command line.

set beacon.sh: Set interval of APRS beacons in crontab.

Syntax : s e t beacon . sh [− i < i n t e r f a c e >|−t <time>|−c <con f i g−f i l e >]
Options :
− i AX.25 i n t e r f a c e (ax0 or ax1)
−t Time i n t e r v a l in minutes (0−60) , 0 d i s a b l e s beacon
−c Read from c o n f i g f i l e i n s t ead o f command l i n e arguments

9

send message.sh: Send APRS message.

Syntax : s e t beacon . sh [− i < i n t e r f a c e >|−c <c a l l >|−p <path>|−m <message >]
Options :
− i AX.25 i n t e r f a c e (ax0 or ax1)
−c Des t inat i on c a l l
−p Path : 0=none , WIDE2−1, WIDE2−2, WIDE3−3 or c a l l o f d i g i p e a t e r
−m Message to send .

send beacon internal radio.sh: Send the beacon on ax0 as defined in the configura-
tion file.

send beacon external radio.sh: Send the beacon on ax1 as defined in the configura-
tion file.

3.5.2 Initialization and main loop

The custom software is started by calling ham/start aprs server.sh at boot via the crontab
of the user who owns the program. This is described in the installation file. From here all
the drivers are installed and the KISS-ports are attached to the AX.25 stack. The APRS
data from APRX is redirected to the custom software and the main loop is started.

3.5.3 Web interface

Figure 11: web interface: main page

10

Figure 12: web interface: sending message

Figure 13: web interface: telemetry

A web site is used as a user interface. The pages are served by Apache2. In order
to reach the server, a network adapter must be installed on one of the two external
USB ports. An Ethernet adapter should work out of the box. A WiFi adapter must be
configured by the user. The web page is available via http at port 80.

3.5.4 PE1RXF telemetry

This custom protocol for telemetry is described in detail on my website. It can be found
at: https://www.meezenest.nl/mees/aprs telemetry.html

11

4 Open source software and hardware

All the design files are available on my website: https://www.meezenest.nl/mees

The custom software is available at my git repositories: https://git.meezenest.nl/

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License.

12

